Distinguished three-qubit 'magicity' via automorphisms of the split Cayley hexagon

نویسندگان

  • Michel Planat
  • Metod Saniga
  • Frédéric Holweck
چکیده

Disregarding the identity, the remaining 63 elements of the generalized three-qubit Pauli group are found to contain 12 096 distinct copies of Mermin’s magic pentagram. Remarkably, 12 096 is also the number of automorphisms of the smallest split Cayley hexagon. We give a few solid arguments showing that this may not be a mere coincidence. These arguments are mainly tied to the structure of certain types of geometric hyperplanes of the hexagon. It is further demonstrated that also an (182, 123)-type of magic configurations, recently proposed by Waegell and Aravind (J. Phys. A: Math. Theor. 45 (2012) 405301), seems to be intricately linked with automorphisms of the hexagon. Finally, the entanglement properties exhibited by edges of both pentagrams and these particular Waegell-Aravind configurations are addressed. PACS numbers: 03.65.Aa, 03.65.Fd, 03.65.Ud, 02.10.Ox

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-Qubit Operators, the Split Cayley Hexagon of Order Two and Black Holes

Abstract The set of 63 real generalized Pauli matrices of three-qubits can be factored into two subsets of 35 symmetric and 28 antisymmetric elements. This splitting is shown to be completely embodied in the properties of the Fano plane; the elements of the former set being in a bijective correspondence with the 7 points, 7 lines and 21 flags, whereas those of the latter set having their counte...

متن کامل

The uniqueness of a generalized hexagon of order 3 containing a subhexagon of order (1, 3)

We show that a generalized hexagon of order 3 which contains a subhexagon of order (1, 3) must be the split Cayley hexagon H(3). MSC-2000 : 51E12 keywords : generalized hexagon, split-Cayley hexagon, incidence geometry

متن کامل

‘Magic’ Configurations of Three-Qubit Observables and Geometric Hyperplanes of the Smallest Split Cayley Hexagon

Metod Saniga, Michel Planat, Petr Pracna and Péter Lévay Astronomical Institute, Slovak Academy of Sciences SK-05960 Tatranská Lomnica, Slovak Republic ([email protected]) 2 Institut FEMTO-ST, CNRS, 32 Avenue de l’Observatoire F-25044 Besançon, France ([email protected]) J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Doleǰskova 3, CZ-1822...

متن کامل

The smallest split Cayley hexagon has two symplectic embeddings

It is well known that the smallest split Cayley generalized hexagon H(2) can be embedded into the symplectic space W (5, 2), or equivalently, into the parabolic quadric Q(6, 2). We establish a second way to embed H(2) into the same space and describe a computer proof of the fact that these are essentially the only two embeddings of this type.

متن کامل

Coverings of the smallest Paige loop

By investigating the construction of the split Cayley generalized hexagon, H(2), we get that there do not exist five distinct hexagon lines each a distance two apart from each other. From this we prove that the smallest Paige loop has a covering number of seven and that its automorphism group permutes these coverings transitively.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Quantum Information Processing

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2013